Printed Pages: 3

EEC-302

(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 131305

Roll No.

B. Tech.

(SEM. III) (ODD SEM.) THEORY EXAMINATION, 2014-15 DIGITAL ELECTRONICS

Time: 3 Hours [Total Marks: 100]

Note: Attempt ALL questions.

1 Answer any four parts:

 $5 \times 4 = 20$

- (a) Represent the decimal number 6208 (i) in2,4,2,1 code, (ii) in BCD and (iii) as a binary number.
- (b) Define parity codes. Design odd parity generator and parity checker for three bit codes data.
- (c) Construct 16×1 Multiplexer with the help of 4×1 Multiplexer.
- (d) Compute M-N and N-M using 1's compliment and 2's compliment methods. Where, M=110100 and N=10101.
- (e) Implement Boolean function of Ex-NOR with the help of (i) using NAND Gates only and (ii) using NOR Gates only.
- (f) Simplify using Karnaugh map the following Boolean Function

$$F(w,x,y,z)=\sum (1,5,7,10,15)$$

$$D(w,x,y,z) = \sum (3,2,6)$$

131305]

1

[Contd...

Answer any four parts: 2

- $5 \times 4 = 20$
- Implement a full subtractor with two half subtractors.
- Design and explain the logic and circuit of 4 bit (b) magnitude comparator.
- Design and explain the logic and circuit of 4-bit by 3-bit binary multiplier.
- Construct a 5×32 decoder with 3x8 decoders and 2×4 decoder.
- Implement the following Boolean function with the help of 4×1 multiplexer $F(x,y,z) = \sum (1,2,6,7)$
- Design and explain the logic and circuit of BCD Adder.
- Answer any two parts: 3

- $10 \times 2 = 20$
- Design a modulo-14 ripple counter. Give its waveforms displaying output states.
- Design a synchronous counter using JK Flip Flop which can count the following cycle. Also draw the bush diagram.

- Draw and explain the circuit of bidirectional shift (c) register with parallel load.
 - Draw and explain the circuit of Ring Counter and Johnson Counter. Write the output states of these counters.
- Answer any two parts: 4

- $10 \times 2 = 20$
- Draw and explain the circuit of a memory binary cell. Using this binary cell draw and explain the circuit of 8×5 RAM.
- Explain PROM, PLA and PAL. Implement the following Boolean functions with a PLA. $F_1(x,y,z) = \sum_{i=1}^{n} (0,2,3,4)$;

$$F_2(x,y,z) = \sum (2,4,6,7)$$

131305]

- Explain ASM Chart. Describe the ASM chart and control logic of Binary Multiplier.
- Answer any two parts: 5

- $10 \times 2 = 20$
- An asynchronous sequential circuit is decribed the excitation and output functions as given below.

$$Y_1 = x_1 x_2 + x_1 y_2' + x_2' y_1; Y_2 = x_2 + x_1 y_1' y_2 + x_1' y_1; z = x_2 + y_1$$

- (i) Draw the logic diagram of the circuit (ii) Derive the transition and output map (iii) Obtain a flow table of the circuit.
- Analyze SR latch with NOR gates. The Boolean functions for the inputs of an SR latch are

$$S = x_1' x_2' x_3 + x_1 x_2 x_3$$

$$R = x_1 x_2' + x_2 x_3'$$

Obtain the circuit diagram using a minimum number of NAND Gates

Obtain a binary state assignment for the reduced flow table shown below. Avoid critical race conditions. Also obtain the logic diagram of the circuit using NAND latches and gates.

X_1X_2				
	00	01	11	10
а	(a), 0	(a),1	b,-	d ,-
b	a,-	(b), 0	(b),0	С,-
С	a, -	- , -	d, -	©,0
d	a,-	a , -	(d),1	(d),1

1313051