VISION INSTITUTE OF TECHNOLOGY, KANPUR DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Sub code & Name: Digital Electronics

Semester & Year : 4th 2nd year

:ECE Branch

Faculty Name : Mr. Satyam Yadav

Unit -1

- 1. State de-morgan's theorem and mention its use?
- 2. Implement truth table of Ex OR gate?
- 3. Express the function Y = A + BC into canonical POS form.
- 4. Find the 2`s complement of given function
 - b. 10010 a. 1000
- 5. Convert

$$(256)_{10} \rightarrow (\dots)_2$$

 $(35)_{10} \rightarrow (\dots)_2$

6. Simplify the following switching function using Karnaugh map(K-map) method and realize expression using gates

 $F(A,B,C,D) = \sum (0,3,5,7,8,9,10,12,15)$

- 7. Implement full adder circuit using Half Adders and make truth table?
- 8. Define the logic output ?
- 9. Define min-term and max-term?
- 10. What are universal gate why these gates are called universal gates?
- 11. Explain binary half adder and draw logic diagram?
- 12. What is multiplexer? what are the use of select line?
- 13. Identify each of these logic gates and complete truth table?

14.

Unit -2

Simplify the following function using K – map, f=ABCD+AB'C'D'+AB'C+AB & realize the SOP using only NAND gates and POS using only NOR gates (12)
 Simplify the logic circuit shown in figure (4)

- 2. a). i). Minimize the term using Quine McCluskey method & verify the result using Kmap method $\pi M(0,1,4,11,13,15) + \pi d(5,7,8)$. (10)
 - ii). Explain the operation of 3 input TTL NAND gate with required diagram & truth table.

3.	 a). i). Using K-map method, Simplify the following Boolean function and obtain (a) minimal SOP and (b) minimal POS expression & realize using only NAND and NOP gates 	
	$F=\sum_{m}(0.2.3.6.7) + d(8.10.11.15)$	(10)
	ii). Draw the circuits of 2 input NAND & 2 input NOR gate using CMOS	(6)
4	. a). i). Using Quine McCluskey method Simplify the Boolean expression	
	$F(v,w,x,y,z) = \sum (4,5,9,11,12,14,15,27,30) + \sum \emptyset(1,17,25,26,31)$	(10)
	ii). Explain the working of a basic totem-pole TTL 2 input NAND gate.	(6)
5	. a).i).Find a minimal SOP representation for $f(A,B,C,D,E) = \sum_{m}(1,4,6,10,20,22,24,26) + d(0,11,16,27)$ using K-map method. Draw the circuit of the minimal expression using	
	only NAND.	(12)
	ii). Obtain 3 level NOR – NOR implementation of $f = [ab + cd] ef$	(4)
6	Minimize the term using Quine McCluskey method & verify the result using K-map	
	method $\Pi_{M}(1,4,5,9,12,13,14) \cdot \Pi_{d}(8,10,11,15).$	(16)
7.	Find a minimal SOP representation for $f(A,B,C,D,E)=\sum_{m}(1,4,6,10,20,22,24,26)+c$ using K-map method. Draw the circuit of the minimal expression using	1(0,11,16,27)
	only NAND.	(16)
8.	(i)Given Y (A, B, C, D) = $\prod M$ (0, 1, 3, 5, 6, 7, 10, 14, 15), draw the K-map and obtain the	
	simplified expression. Realize the minimum expression using basic gates.	(8)
	(ii) Prove by perfect induction	(8)
	(i). $A + AB = A$	
	(ii) $A(A+B) = A$	

- (iii) A+A'B = A+B and
- (iv) A(A'+B) = AB

Unit-3

- 1. Draw the block schematic of Magnitude comparator and explain its operation
- 2. Draw & explain the block diagram of a 4-bit parallel adder / Subtractor
- 3. Design & implement the conversion circuits for BCD to Excess 3 code.
- 4. (i) Design a BCD to Gray code converter. Uses don't care.
 - (ii) Implement full subtractor using Demultiplexer.
- 5. Design an Excess -3 to BCD code converter. Uses don't care
- 6. (i). Implement full adder using decoder.

(ii).Realize $F(w, x, y, z) = \Sigma (1,4,6,7,8,9,10,11,15)$ using 8 to 1 Mux

- 7. Explain the operation of carry look ahead adder with neat diagram
- 8. (i). Draw and explain the BCD adder circuit.

(ii). Design a seven segment decoder circuit to display the numbers from 0 to 3.

9. (i).Design & explain the working of Gray to BCD converter. (ii).Explain even parity checker and generator.

10. (i).Draw the logic diagram of BCD to Decimal decoder and explain its operations.