Printed Pages: 02

 Paper Id:
 1
 9
 9
 4
 2
 1

Sub Code: RAS401											
Roll No.											

B. TECH. (SEM-IV) THEORY EXAMINATION 2017-18 MATHEMATICS - III

Time: 3 Hours

Total Marks: 70

 $2 \ge 7 = 14$

 $7 \ge 3 = 21$

Note: Attempt all Sections. If require any missing data, then choose suitably.

SECTION A

1. Attempt *all* questions in brief.

- a) Discuss Singularity and its types.
- b) Write Cauchy-Riemann equation in polar co-ordinates.
- c) The life of army shoes is normally distributed with mean 8 months and standard deviation 2 months. If 5000 pairs are insured, how many pairs would be expected to need replacement after 12 months? Given that $P(z \ge 2) = 0.0228$.
- d) Determine moment generating function of Binomial distribution.
- e) Prove that: $E^{\frac{1}{2}} = \mu + \frac{1}{2}\delta$
- f) Write Newton-Cote's quadrature formula.
- g) Find Z-transform of f(k) = u(-k).

SECTION B

2. Attempt any *three* of the following:

- a) Determine an analytic function f(z) in terms of z if $u + v = 2\frac{\sin 2x}{e^{2y}} + e^{2y} 2\cos 2x$.
- b) Find the mean variance of Poisson distribution.
- c) Find $\int_0^6 \frac{e^x}{1+x} dx$ using (i) Trapezoidal rule, (ii) Simpson's $1/3^{rd}$ rule and (iii) Simpson's $3/8^{th}$ rule.
- d) A rod is rotating in a plane. The following table gives the angle θ (in radians) through which the rod has turned for various values of time t (in seconds).

t:	0	0.2	0.4	0.6	0.8	1.0	1.2
θ :	0	0.12	0.49	1.12	2.02	3.20	4.67

Calculate the angular velocity and angular acceleration at t = 0.2 and t = 1.2 second.

e) Find Fourier cosine transform of
$$\frac{1}{1+x^2}$$
, hence find Fourier sine transform of $\frac{1}{1+x^2}$

SECTION C

3. Attempt any *one* part of the following:

- (a) Verify Cauchy theorem by integrating e^{iz} along the boundary of the triangle with the vertices at the points 1+i, -1+i and -1-i.
- **(b)** Evaluate $\int_0^\infty \frac{\sin mx}{x} dx, m > 0..$

4. Attempt any *one* part of the following:

(a) The following table represents the height of a batch of 100 students. Calculate skewness and kurtosis:

Height (in cm)	59	61	63	65	67	69	71	73	75
No. of students	0	2	6	20	40	20	8	2	2

(b) Use the method of least squares to fit the curve $y = \frac{c_0}{x} + c_1 \sqrt{x}$ to the following table of values:

	0.1			0.5	1	2
у	21	11	7	6	5	6

5. Attempt any *one* part of the following:

(a) Find the root of the equation $xe^x = \cos x$ using Regula-Falsi method correct to four decimal places.

(b) Find Newton's divided difference polynomial for the following data:

x: -3 -1 0 3 5 f(x): -30 -22 -12 330 3458

6. Attempt any *one* part of the following:

- (a) Solve the initial value problem $u' = -2tu^2$, u(0) = 1 with h = 0.2 on the interval [0, 0.4]. Use Runge-Kutta fourth order method and compare your result with exact solution.
- (b) Solve the following system of linear equations by Matrix decomposition method taking $l_{ii} = 1$ for $1 \le i \le 3$.

3x - y + 2z = 12; x + 2y + 3z = 11; 2x - 2y - z = 2

7. Attempt any *one* part of the following:

(a) Using Z-transform, solve the following difference equation:

 $y_{k+2} + 4y_{k+1} + 3y_k = 3^k$, given that $y_0 = 0$ and $y_1 = 1$.

(b) The temperature *u* in the semi-infinite rod $0 \le x < \infty$ is determined by the differential equation $\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$ subject to conditions

(i) u = 0 when $t = 0, x \ge 0$ (ii) $\frac{\partial u}{\partial x} = -\mu$ (a constant) when x = 0 and t > 0, (iii) u (x, t) is bounded. Determine the temperature u (x, t).

$7 \ge 1 = 7$

7 x 1 = 7

 $7 \ge 1 = 7$ r decimal

 $7 \times 1 = 7$