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1 3 3
Transform [2 4 10] into unit matrix by using elementary transformations: [GBTU 07,09, 11]

3 8 4
Find the inverse of the following matrices employing elementary transformations:

0 1 2
A=[1 2 3] [G.B.T.U. 2008, (SUM) 2009]

311
1 2 3

Employing elementary transformations, find the inverse of the matrices [2 4 5] [GBTU 07]
3 5 6
3 -3 4
Find the inverse of the matrices by using elementary row operations: |2 —3 4| [GBTU 14]
0 -1 1
2 3 4
Find the inverse of the matrices: |4 3 1 [GBTU 12]

1 2 4

Using elementary transformations to reduce the following matrices A to triangular form and
2 3 -1 -1
. 1 -1 -2 —4
hence find the rank of A. A= 3 1 3 _ G.B.T.U. (C.0) 2006, G.B.T.U. 2011]

6 3 0 -7

2 3 =2 4 1 -1 2 -3
. . 3 =21 2 4 1 0 2
Find Rank of matrix .(a) A= 3 2 3 4 [GBTU 07], (b) A= 0 3 0 4 [GBTU 12]
-2 4 0 5 01 0 2
1 1 -1 1
Reduce the matrix A= _11 (1) _13 _23 to column Echelon form hence find Rank.[GBTU 10]
1 -1 3 3
1 3 -1 2
. . 0 11 -5 3
Reduce A to Echelon form and then to its row canonical form where A= 2 _c 3 1
4 1 1 5
Hence find the rank of matrix A. [GBTU 2015]
1 2 -1 4
. . 2 3 3 4
Reduce the matrix to Normal form and hence find Rank A= 1 2 3 4 [GBTU 2010]
-1 -2 6 -7
Find the Rank of the matrices using elementary transformations:
1 -3 1 2 ; 22—1_33 _—11
(@ [0 1 2 3 [GBTU 2010] (b) 10 1 1 [GBTU 2013]
3 4 1 -2 0 1 1 1
5 14 4
Reduce the matrix to Normal form and find Rank, (a) A=]0 2 1 [GBTU 2011]
1 2 0



0 1 2 -2 3 2 -1
(b) A=]14 0 2 6 [GBTU 2007] (c) A=14 2 6 [AKTU 2016]
2 1 3 1 7 4 5
(1 2 1.0 Lo 3T
(d) A=|-2 4 3 0 | [GBTU 2015] (e) A=13 1 o 3 [GBTU 2011]
1 0 2 -8 11 -2 o0
-1 -3 3 -1
(f A=({1 1 -1 0| [GBTU2014]
2 -5 2 -3
3 P P
15. Find all value of P for which the matrix A =|P 3 P]Jisofrank1. [UPTU 2012]
P P 3

(16) Using matrix method, Show that the equations: 3x+3y+2z=1, x+2y =4,

10y + 3z = =2, 2x — 3y —z = 5 are consistent and hence obtain the solution for x,
y, Z.

[G.B.T.U.(A.G.)SUM 2010, U.K.T.U.2010]

(17) Test the consistency of the following system of linear equations and hence find the

solution: If exists: (i) 4xq —x, =2,—x1 +5x, — 2x3 =0, —2x, + 4x3 = —8

[ G.B.T.U. 2006] (i) 7x1 + 2x, + 3x3 = 16, 2x; + 11x, + 5x3 = 25, x; + 3x, + 4x3 = 13

[ U.B.T.U. 2008]

(18) Investigate for what values of A and p do the system of equations x4+ y +z=6 ,

x4+ 2y + 3z =10, x+ 2y + Az = u (i) no solution (ii) unique solution (iii) Infinite Solution.
[G.B.T.U.SUM 2007

(19) Solve the system of equation 2x1+3x2+X3=9, X1+2X2+3X3=6, 3x1+X2+2X3=8 by Gaussian

elimination method: [GBTU 2007]
(20) Show that the of equations 2x + 6y + 11 =0, 6x + 20y —6z+ 3 =0and

6y —18z+1=0 arenot Consistent. [U.K.T.U. 2011]
(21) Test the consistency of the following system of linear equation and hence find the

solution: 4x1-x2=12, -X1+5x2-2x3=0, -2X; +4x3=-8.
(22) Determine ’b’ such that system of homogeneous equation 2x +y + 2z = 0,x+y + 3z =
0, 4x+ 3y +bz =0 has (i) trivial solution (ii) Non-trivial solution & find Non-trivial

Solution using matrix method? : [G.B.T.U. 2009]
(23) Find the value of k so that the equations: x +y+3z=0, 4x+3y+kz =0,

2x + y + 2z = 0 have a non- trivial solution. [G.B.T.U. (SUM) 2008]
(24) Show that system of equation  3x + 4y + 5z =gq, 4x + 5y + 62 =D,

5x + 6y + 7z = c does not have a solution unless a+c=2b . [G.B.T.U. (SUM) 2008]

(25) For what values of4 , the equations x +y+z=1, x+2y+4z=41,x+ 4y + 10z = A2
Have a solution and solve them completely In each case.  [G.B.T.U. (C.0.) 2011] (SUM) 2007]
a+iy —ﬂ+i6], . e 2 2 2 2 _

B+iS a-—iy isUnitary ifa“ + g“ +y~+6°=1

[G.B.T.U 2011, 2006]

(26) Show that the matrix



(27)IfN = [_1(_)|_ 9 1 BZL], Obtain the matrix (I — N)(I + N)~1,show that it is Unitary.

[GBTU.CO11]
i 2-3i 4+45i
6+i 0 4-5i
- 2—-i 2+4i

(28) Express the matrix A = , as a sum of Hermition and Skew-

Hermition Matrix. [G.B.T.U. 2010]
1 0 4
(29) Find Eigen valuesof matrix A=]0 2 0 [G.B.T.U. 2008]
3 1 -3
2 5 7
(30) Find Eigen values of matrix A=|(5 3 1 [G.B.T.U. (SUM) 2008]
7 0 2
-2 2 -3
(31) Find Eigen values and Eigen vectors of the matrix:4A = | 2 1 —6]| [GBTU(SUM) 2010]
-1 -2 0
8 -6 2
(32) Find Eigen values and Eigen vectors of the matrix:A = |—-6 7 —4|[G.B.T.U. 2011]
2 -4 3
1 2 3
(33) Find Eigen values and Eigen vectors of the matrix: A = [3 2 1] [G.B.T.U. 2009]
1 2 3
2 -1 1
(34) Verify Cayley -Hamilton theorem for the matrix: A = |—1 2 1|, Find A~%. [GBTU 2006]
1 -1 2
(35) Verify Cayley -Hamilton theorem for the matrices (i) A = B _21] [G.B.T.U. 2009]
2 2 1 1 0 —4
(ii)A=10 1 -1 [G.B.T.U. 2007], (iiA=|0 5 4 [G.B.T.U.] (C.0.) 2010]
3 -1 1 -4 4 3
-1 2 =2
(36) Reduce the Matrix A=| 1 2 1 |tothe Diagonalizes (P"*AP) form. [G.B.T.U. 2006]
-1 1 0
(37) Find a Matrix P which diagonalizes the Matrix = [;} ;] .Verify P"YAP = D, Where D Is
the Diagonal Matrix. [G.B.T.U. 2009]
3 1 -1
(38) Show that the matrix A = [—2 1 2 |is diagonalizable. Hence, find P such that P"1AP
0 1 2
Is a diagonal matrix. . [G.B.T.U. C.0.) 2009]
3 s 1 6 1
(39) Diagonalize the Matrix (i) [7 31] [G.B.T.U. (SUM)2009] (ii)[1 2 0| [G.B.T.U. 2007]
0 0 3

(40) Find Eigen values and corresponding Eigen vectors of the matrix and hence diagonalize it.

2 01
a. 10 3 0 [G.B.T.U. C.0.) 2011]
1 0 2
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Define velocity and Acceleration in vector calculus. [G.B.T.U. (SUM 2010)]
Define Gradient of a scalar field. [G.B.T.U.20006,2007 (SUM 2008)]
Find grad® when @ is given by @ = 3x2y — y3z2at the point(1, —2,—1). [G.B.T.U. 2007]

Show that V»™ = nr™~2 # and hence evaluate V% where ¥ = xi + yj + zk.

Show that V(d.7) = @ where # = xi + yj + zk and d is a constant vector. [G.B.T.U. 2008]
Find a unit Normal to the surface x3 + y3 + 3xyz = 3 at the point (1,2,—1). [G.B.T.U. 2014]
Find a unit vector Normal to the surface x?y + 2xyz = 4 at the point (2,-2,3). [G.B.T.U. 2014]
What is the greatest rate of increase of u = xyz? at the point (1,0,3)?

If VO = (y? —2xyz®)i+ (3 + 2xy — x3y3)j + (623 — 3x?yz?)k find k. [G.B.T.U. 2015]

. Find the Angle between the surfaces x2+y? + z2 = 9 and z = x2+y? — 3 at the point (2,1, 2).

Mu=x+y+z,v=x?>+y2+z%,w=yz+zx+xy, prove that grad u, grad v,and grad w are
Coplanar vectors. [G.B.T.U. 2010, 13, 2015]
. Find the directional derivative of the function f = x? — y2 + 222 at the point P(1,2,3) In the
direction of the PQ where Q is the point (5,0 ,4). [G.B.T.U. AG (SUM 2010)]
-1
Find the directional derivative of @ = (x% + y? + z2)= at the point P(3,1,2) in the direction
Of the vector yzi + zxj + xyk. [G.B.T.U. (SUM 2007, 2014)]
Find the directional derivative of @ = 5x2y — 5y2z + Szzx at the point P(1,1,1)
In the direction of the line == =22 =2, [G.B.T.U. (SUM 2010)]

Find a unit vector normal to the surface xy3z? = 4 at the point (=1, —1, 2). [G.B.T.U. (SUM 2008)]
Find a unit normal vector f of the cone of revolution z2 = 4(x? + y?) at P(1,0,2) [GBTU(CO)2010]
If @ = xy? + yz3 at the point (2,—1, 1) in the direction of the normal to the surface
xlogz—y*+4=0 at (2,-1, 1). [G.B.T.U. 2011]
If f(x,v,z) = 2x% + 3y? + z? at point P(2,1,3) in the direction of vector @ = i — 2k. [GBTU(CO)09]

If # = xi + yj + zk then show that (@) Lgradr=" [G.B.T.U. (CO)2011]

(b) Egrad% = —% [G.B.T.U. (CO) 2011] (c) Ugradr™ =nr""27 [G.B.T.U. 2008 (C0O)2011]
(e) cud(@™#) =0 [G.B.T.U (C0O)2010]
Prove that V logr =ri2 [G.B.T.U.(CO) 2011]and V f(r) = f'(r) Vr [G.B.T.U. (CO)2011]

Find the directional derivative of % in the direction 7 where 7 = xi + yj + zk [G.B.T.U. (C0)2012]

Find the directional derivative of rlz in the direction # where 7 = xi + yj + zk.
Define Divergence and curl of a vector point function.  [G.B.T.U.2006, 2007 (SUM) 2008, 2012]
If # = xi + yj + zk., showthat (i) divF=3 [G.B.T.U.2014] (ii)curl# =0 [G.B.T.U.2014]
If F(x,y,z) = xz3i — 2x%yzj + 2yz*k, Find divergence and curl of F(x, y, ). [G.B.T.U. 2007]
Find divergence and curl of the vector field V = x2yZ2i + 2xyj + (% — xy)k. [GBTU(SUM 2007)]
A vector field is given by 4 = (x2 + xy2)i + (y2 + x2y)j. Show that the field is irrotational and
Find the scalar potential.
A fluid motion is given by V = (y + 2)i + (z + x)j + (x + y)k
0] Is this motion irrotational? If so, find the velocity potential. [A.K.T.U 2016]
(i) Is the motion possible for an an incompressible fluid?
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Find divergence and curl of the vector field (i) V = xyzi + 3x2yj + (xz2 — y?2)k
And R =(x%+y2)i+ (y2+2zx)j + (2% + xp)k [G.B.T.U. 2015]
Prove that (y? — z? + 3yz — 2x)i + (3xz + 2xy)j + (3xy — 2xz + 2z)k is both solenoidal and
irrotational. [G.B.T.U. 2009]
A fluid motion is given by ¥ = (y sinz — sinx)i + (x sinz + 2yz)j + (xy cox z + y?)k. Is the motion
Irrotational? If so find the velocity potential. [G.B.T.U. 2011]

fF=(+y+2)i+j—(x+y)k, showthat F.curl F = 0.
If 4 = (3xyz2)i — (yz)j + (x + 22)k, find curl (curl 4).
Show that the vector field V = (siny + z)i + (x cosy — z)j + (x — y)k isirrotational.

Find the directional derivative of V. (V@) at the point (1, —2, 1) in the direction of the normal to the
Surface xy%z = 3x + z% , where @ = 2x3y2z*. [G.B.T.U. 2009, 2014]
Show that 4 = (6xy + z2)i + (3x% — z)j + (3xz2 — y)k is irrotational. Find the velocity potential @
Such that 4 = V. [G.B.T.U. 2011, 2014]
Find the total work done by the force F = (x2 + y2)i — 2xyj in moving a point from (0, 0) to (a, b)
Along the rectangle bounded by linesx =0, x =a, ,y = 0,and y = b. [G.B.T.U.2014]
Evaluate [ [, A.nds,where A = (x + y2)i — 2xj + 2yzk and S is the surface of the plane

2x +y + 2z = 6 in the first octant.

Evaluate the line integral fc [(x? + xy)dx + (x? + y*)dy], where C is the square formed by the
linesx=x1landy = +1.

If & = 2xzi — xj + y2k, evaluate 11, A dV,whereV is the region bounded by the surface

x=0y=0 x=2y=6 z=x2%2z=4.

Evaluate §. F.d7 where F(x,y,2) = e®*(yzi + zxj + xyk) and # = xi + yj + zk and c is the
boundaryof 0<x<1,0<y <1, and z = 1. Clockwise. [G.B.T.U. (SUM 2008)]
If A= (x —y)i + (x + y)j, evaluate §, A.d# around curve C consisting of y = x and x? = y. [14]
Show that the vector field F = (y2)i + (zx + 1)j + (xy)k is conservative. Find the scaler

potential. Also find the work done by Fin moving a particle from (1,0,0) to (2,1,4). [GBTU 2013]
State Gauss Divergence Theorem. (OR)

Define relation between surface integral and volume integral. [GBTU 2006,2007,(C0)11,2012)]

Find [ [, F.nds,where F = (2x + 32)i — (xz + y)j + (? + 22)k and S is the sphere having
centre at (3,-1,2) and radius 3. [G.B.T.U. 2006]
Define STOKE’s Theorem. (OR)

Define relation between line and surface integral. [G.B.T.U.2007, (SUM) 2008, 2009, 2012]
If F = 3yi — xzj + yz2k and S is the surface of the paraboloid 2z = x2 + y? bounded by z = 2
Show by using Stoke’s theorem that [ [, (V x F).dS = —20m [G.B.T.U. (SUM 2007)]
State Green theorem in the plane. [G.B.T.U. 2008, 2012]
Apply Green theorem to evaluate §. [(2x* — y*)dx + (x* + y*)dy] where C is the boundary of

the area enclosed by x- axis and the upper half of circle x? + y? = a2.[GBTU (SUM) 2010,(CO)11]

Use Green’s theorem to evaluate gﬁc [(x? + xy)dx + (x? + y?)dy] where C is the square formed
by the lines y =41, x+ 1. [G.B.T.U. (CO) 2010]
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(1) Use the method of separation of variables to solve the equation,

g—z = 2% + u, Given that u(x, 0) = 6e=3* [G.B.T.U. 2004,06,(SUM)10,11]

2
(2) Use method of separation of variables to solve the equation, ou_5 Z—Z + Z—; = 0[GBTU2005,09]

0x?2
(3) Solve by the method of separation of variables, 43—1; + g—z =3u, u=3e*—e>* whent=0

(4) Solve the following equation by the method of separation of variables,

2
% = e~! Cosx, Given that u=0 when t=0 and Z—l: = 0 when x=0. [G.B.T.U. 2008]
(5) Find the solution of wave equation. [G.B.T.U. 2005]

(6) A string is stretched and fastened to two points [ apart. Motion is started by displacing the string

intheformy = A sin% from which it is released at time t=0. Show that the displacement of
any point at a distance x from one end at time t is given by-

Tct

y(x, t) = Asin% Cos =~ [G.B.T.U. 2004,07,09, (SUM)09]

(7) A tightly stretched string with fixed end points x=0, and x = Lis initially in a position given by

y = y,Sin3 ™ Ifitis released from rest from this position,

l

Find the displacement y(x,t). [G.B.T.U. (C0)2011]
(8) If a string of length | is initially at rest in equilibrium position and each of its point is given the
(9) Find the equation of one dimensional heat flow and its solution. [G.B.T.U. (C0)2011]

(10) A rod of length | with insulated sides is initially at a uniform temperature u, . Its ends are suddenly
cooled to 0°C and are kept at the temperature. Find the temperature function u(xt).

[G.B.T.U. (SUM) 2010, 2011]

2
(11) Solve the equation Z—u o u

T == with boundary condition, u(x,0) = 3 sin x,u(0,t) = 0,

u(l,t) =0 where0 < x < L [G.B.T.U. 2002]

(12) A bar with insulated sides is initially at a temperature 0°C throughout. The end x = 0, is kept



At 0°C , and heat is suddenly applied at the end x = [, so that Z—: = Aforx =1[,whereAis
Constant. Find the temperature function u(x,t). [G.B.T.U. 2002]

2 2
(13) Use separation of variables method to solve the equation ZTLZL + ZTLZL = 0 subject to the boundry

conditions u(0,y) = u(l,y) = u(x,0) and u(x,a) = sin == [G.B.T.U. 2003,04]
1

(14) Solve the Laplace equation % + giyl; = 0 in a rectangular in the xy-plane with (x,0) = 0,
u(x,b) =0, u(0,y) =0andula,y) = f(y) parallel to y- axis. [G.B.T.U. (SUM)2008]
(15) Solve the equation by the method of separation of variables Uy + Uy + 2u,

u(0,y) =0, % w(0,y) =1+e"¥ [G.B.T.U. 2009,2010]
(16) Solve by the method of separation of variables, Z_Z = 42—; u(0,y) =8e™3 [G.B.T.U. 2008]
(17) Solve by the method of separation of variables, ZZTZ — g—; =0 [G.B.T.U.(SUM) 2007]
(18) Solve by the method of separation of variables  y3 Z—Z + x? ?)_Z =0 [G.B.T.U. 2011]
(19) Show how the wave equation C;ZTJ; =c? 22732’ can be Solve by the method of separation of variables.

(20) Find the deflection u(x, y, t) on the tightly stretched rectangular membrane with sides a and b
having wave velocity ¢ = 1, if the initial velocity is zero and its deflection is

f(x,y) = sin ? sin ? [G.B.T.U. 2011]

(21) Find the solution of heat equation. [G.B.T.U.(C0O) 2011],2007]

(22) Find the temperature in a bar of length 2, whose ends are kept at zero and lateral surface insulated
i [G.B.T.U.(C0)2007,2009]

if the initial temperature % + 35in7 .

(23) Find the solution of Laplace Equation in Two Dimension. [G.B.TU 2011 (C0)10,]
2 2
(24) Solve by the method of separation of variables, ou + T _ 0 subject to the boundary condition
0x2 = 0y2
u(0,y) = u(l,y) = u(x,0) =0, and u(x,a) = sin#. [G.B.TU(C0)2009,]

2 2
(25) Solve the Laplace equation ZTIZL + 371; = 0 in a rectangular with (0,y) = 0, u(a,y) =0

, u(x,b) = 0and u(x, 0) = f(x) parallel to x- axis. [G.B.T.U. 2008]






