Printed Page 1 of 2

Paper Id: 140322

Roll No:

B. TECH.

(SEM-III) THEORY EXAMINATION 2019-20 FLUID MECHANICS & FLUID MACHINES

Time: 3 Hours

Note: 1. Attempt all Sections. If require any missing data; then choose suitably. **SECTION A**

1. Attempt *all* questions in brief.

a.	2 liter petrol weighs 14 N. Calculate the specific weight, mass density, specific
	volume and specific gravity of petrol with respect to water.
b.	Find the surface tension in a soap bubble of 40 mm diameter when the inside
	pressure is 2.5 N/m ² above atmospheric pressure.
c.	What do you understand by Euler's number?
d.	State Bernoulli's theorem.
e.	What is Water Hammering?
f.	A square flat plate of dimension 1.5 m moves at 50 km/hr in stationary air of
	density 1.15 kg/m ³ . If the coefficient of drag and lift are 0.15 and 0.75
	respectively, determine the lift and drag force.
g.	Find the force exerted by a jet of water of diameter 75 mm on a stationary flat
	plate, when the jet strikes the plate normally with a velocity of 20 m/s.
h.	Differentiate between turbine and pump.
i.	How will you classify the turbines?
j.	Define slip, percentage slip and negative slip of a reciprocating pump.

SECTION B

2. Attempt any *three* of the following:

$10 \ge 3 = 30$

a.	Develop a formula for capillary rise of a fluid having surface tension σ and
	contact angle θ between:
	(i) Two concentric glass tubes of radii r_0 and r_i
	(ii) Two vertical glass plates set parallel to each other having a gap t
	between them.
b.	The velocity potential for a two dimensional flow is
	$\Phi = \mathbf{x} (2\mathbf{y} - 1)$
	Determine the velocity at the point $P(4, 5)$. Also obtain the value of stream
	function at P.
	Determine the displacement this langer, means this langer, share forten and
c.	Determine the displacement inickness, momentum inickness, shape factor and
	flet r lete
	11at plate.
	$U/U_0 - (y/0)^{-1}$
	where u is the velocity at a height y above the surface and U_0 is the free
	stream velocity.
d.	Define the term governing of turbine. Describe with neat sketch the working of
	an oil pressure governor.
e.	What do you mean by manometric efficiency, mechanical efficiency and
	overall efficiency of a centrifugal pump?

Sub Code:KME302

Total Marks: 100

2 x 10= 20

Printed Page	e 2 of 2					S	ub (Code	e:KI	ME3	602
Paper Id:	140322	Roll No:									

SECTION C

3. Attempt any one part of the following:

(a)	A 30 cm diameter pipe conveying water, branches into two pipes of diameters
	20 cm and 15 cm respectively. If the average velocity in the 30 cm diameter
	pipe is 2.5 m/s, find the discharge in this pipe. Also determine the velocity in
	15 cm pipe if the average velocity in 20 cm diameter pipe is 2 m/s.
(b)	What is pitot tube? How will you determine the velocity at any point with the
	help of pitot tube?

4. Attempt any *one* part of the following:

If the velocity field is given by (a) u = x + y and $v = x^3 - y$ Find the circulation around a closed contour defined by x = 1, y = 0, y = 1 and x = 0.(b) The pressure difference Δp in a pipe of diameter D and length l due to viscous flow depends on the velocity V, viscosity μ and density ρ . Using Buckingham π -theorem, obtain the expression for Δp .

5. Attempt any one part of the following:

- A fluid of viscosity 0.7 Ns/m^2 and specific gravity 1.3 is flowing through a (a) circular pipe of diameter 100 mm. The maximum shear stress at the pipe wall is given as 196.2 N/m^{2,} find Pressure gradient, (i)

 - Average velocity and, (ii)
 - (iii) Reynolds number of the flow.
- Describe the phenomenon of boundary layer formation over a smooth flat plate. (b)

6. Attempt any one part of the following:

A pelton wheel has a mean bucket speed of 10 m/s with a jet of water flowing (a) at the rate of 700 liters/s under the head of 30 meters. The buckets deflect the jet through an angle of 160°. Calculate the power given by water to the runner and the hydraulic efficiency of the turbine. Assume co-efficient of velocity as 0.98.

With the help of neat sketch explain the working of kaplan turbine. (b)

http://www.aktuonline.com

7. Attempt any *one* part of the following:

(a)	Define specific speed of a centrifugal pump. Derive an expression for the same.
(b)	Discuss the effect of acceleration in suction and delivery pipes on indicator
	diagram.

$10 \ge 1 = 10$

 $10 \ge 1 = 10$

 $10 \ge 1 = 10$

 $10 \ge 1 = 10$

 $10 \ge 1 = 10$